当前位置: 首页 > 行业资讯

风光消纳压力提升,大规模、长周期氢储能迎机遇

时间:2023-10-23 14:17:40 行业资讯 我要投稿

1.可再生能源大规模应用根本性问题在于消纳,以西北为代表的新能源消纳压力显现

从新能源利用率看,西北外送电省份消纳压力突出。国家电网《新能源消纳运行评估及预警技术规范》设置了新能源消纳监测预警红/黄/绿色区域,进入红色预警的地区或面临暂停风光电接入的风险,主要判断指标为新能源利用率。从2021年-2023H1各省逐月利用率数据来看:

区位上:利用率偏低区域主要集中在西北地区(内蒙古、甘肃、宁夏、青海、新疆等省份)。目前,西北地区第一批大型风光基地装机总容量97GW已全部开工建设,其中约50%电量外送消纳。预计通过提升已建输电通道利用效率共计可提升跨区域输电能力4200万千瓦,基本满足了第一批大基地的外送需求;第二批项目(规划“十四五”投产200GW)正在陆续开工,风光项目建设周期一般为6-12个月,原则上2023年并网,其中约75%电量外送消纳;第三批项目审查抓紧推进。随着第二、批风光项目投运,消纳问题将进一步突出。

时间上:Q2为弃电高峰期。消纳问题最核心影响因素仍是终端用电需求,在迎峰度冬、迎峰度夏两个时间节点上用电需求旺盛可平抑短时供大于求的矛盾;此外,2Q22来水偏丰,同为“看天吃饭”的可再生能源类型、具有长期不可预测性,水电超发在一定程度上也影响到了风光消纳。

新能源装机高增、本地电量富余为西北消纳问题突出主因。“源荷分离”规划下,西北新能源装机高增,目前青海、甘肃、宁夏、内蒙、新疆风光装机占电源总装机比例已超过35%,随着大基地建设推进,未来仍将成为风光装机快速渗透的主战场。

2.储能需求逐步高增,源侧发展长周期、大规模储能是绿色大电网稳定供电的关键

储能在发电侧、电网侧以及负荷侧的驱动因素不同。在发电侧其驱动力在于国家强制性新能源配套储能政策;在电网侧储能驱动力则是基于新能源比例提升后电力系统对调峰、调频等辅助服务的巨大需求;在负荷侧储能驱动力在于峰谷价差拉大套利空间、部分地区(例如:浙江、江苏、山东)分布式电源配储政策等。

在源侧实现风光消纳并发展大规模长时储能,是实现绿色大电网稳定供电的关键,也是绿电外送的前提,氢储能就是其中的关键。我国大规模可再生能源利用中的根本性问题是西北和华北地区的大光伏和大风电的外运或消纳问题,当前可行方案分为两类:外送绿电:风/光发电+零碳/低碳灵活电厂同步配置,通过特高压外输绿电,适用于西北和华北大光伏和大风电,电力企业等作为主导方。离网制氢:风/光发电+电解水制氢→氢能多样化应用,适用于大多数风电和光伏储能,石化能源等企业主导。

3.氢储能大规模应用和时间边际成本低,是长周期、大规模储能的优选项

氢能适用于大规模和长周期的储能,具备无自衰减、扩容成本低等特性。氢储能主要指将太阳能、风能等间歇性可再生能源余电或无法并网的弃电,通过电解水制氢的方式储存,可就地消纳、时经燃料电池进行发电或管道、长管车运输等方式供应于下游应用终端。相较于抽水储能、压缩空气储能、蓄电池储能(锂电)具有无自衰减、扩容成本低、能量密度大、能源发电转移便捷等优点,凭借其无自衰减的特性,尤其适用于跨周和季度的储能。基于扩容成本低的特点,即仅需增加氢瓶即可扩充储能容量,适用于大规模的储能。

上游侧耦合风光设备电解水制氢,可解决可再生能源电消纳及上网问题。电消纳及上网问题随光伏和风电装机规模高增逐步凸显,风光耦合电解水制氢可实现风光装机无地域限制。近十年来,我国光伏和风电成本快速下降,为装机规模快速提升奠定了基础,但风光发电波动性的特点制约了其进一步扩大规模,因而配储以平抑波动性。现阶段大部分可再生能源发电终局为上网,储能大多仅作为可再生能源电力上网前电源侧波动性的暂时储存电力的方案,在光伏和风电大规模装机至一定规模后,上网及电消纳将成为可预见性需要解决的问题。因此,将风光设备耦合电解槽制取氢气储能,氢气再作为能源使用,将解决储存能量的大规模时空转移特性,实现交通网与能源网的深度耦合。

能源配储需求推动氢储能放量,风光氢储一体化项目逐步落地。风光配储成为刚需,各地政府陆续发布强制配储需求,配储比例最高可达30%,为实现碳中和目标,若在风光装机量达到50亿千瓦、年发电量10万亿度的时候,按10%-30%的配储比例,储能容量将在1万亿-3万亿度,意味着储能必须满足低成本、规模化、无地域限制、长寿命等要求。当前氢能与传统的电池等技术同被认定为储能,纳入了强制配储需求可计算的比例内,可再生能源装机叠加配储需求,上游供给侧放量将推动氢储能发展,风光氢一体化项目正处于不断规划与落地的状态,2023年开工风光氢储一体化项目对应制氢产能已达28万吨。

广告位出租
广告位出租